ДОМЕННЫЙ ПРОЦЕСС
Контур вертикального сечения рабочего пространства доменной печи называют ее профилем. На рис. показаны отдельные его части. Часть пространства доменной печи, занятая загруженными в нее материалами и продуктами плавки, называется полезным объемом. С ростом потребности в металле, развитием энергетических и технических возможностей высота и поперечные размеры печей увеличивались. При этом соответственно возрастал и полезный объем, который у современных печей составляет обычно от 1300 до 2300 м 3 . Начиная с 1973 г. в Советском Союзе строятся печи объемом 3200 и 5000 м 3 .
Горение кокса происходит у фурм, через которые в доменную печь поступает воздух, нагретый до 1000—1200° С с избыточным давлением 304 кН/м 2 и линейной скоростью 140—200 м/с. Окислительная зона простирается от фурм примерно на 1200 мм к оси печи и на 600—1000 мм вверх. Содержание кислорода в газах по направлению к оси печи уменьшается; содержание СО2 возрастает, а затем уменьшается в результате взаимодействия с углеродом по частным реакциям:
С+ СО2 = 2СО; ΔН298 = 172,32 кДж
2С + О2 = 2СО; ΔН298 = — 221,45 кДж.
Суммарная реакция отражает процесс горения кокса. Если учесть, что в воздушном дутье содержится азот, то этой реакции соответствует следующий состав газа в горне печи: 34,7% СО и 65,3% Н2. Этот газ распространяется внутрь и вверх, отдавая тепло шихтовым материалам и взаимодействуя с ними как восстановитель.
В результате горения кокса у фурм в верхней части горна и заплечиках непрерывно освобождается часть плавильного пространства, в которое смещаются вышележащие слои сыпи.
Наиболее высокая температура в доменной печи — в фокусе горения на расстоянии 700— 800 мм от фурм. При выплавке передельных чугунов она достигает 1850° С, а при плавке на ферросилиций 2000° С. Колошниковые газы обычно нагреты до 250—275° С.
Давление дутья у фурм зависит от объема печи, возрастая с увеличением последнего; для печей объемом 1000 м 3 оно равно 215,7 кН/м 2 . По направлению к колошнику давление газа равномерно уменьшается до 107,9 кН/м 2 над уровнем сыпи. Сейчас работают при повышенном давлении колошникового газа. Для этого в газопроводе ставят шайбу, уменьшающую его сечение, и избыточное давление газа на колошнике увеличивается до 98—196 кН/м 2 . При этом скорость движения газа в печи уменьшается, улучшается распределение его по сечению печи, проникновение в шихту и отдельные куски руды.
Рис. Вертикальный разрез и профиль доменной печи полезным объемом 2700 м 3
Все это позволяет увеличить расход дутья без опасений нарушить равномерное распределение газов и сход шихтовых материалов. Увеличение расхода дутья при прочих постоянных условиях увеличивает объем и протяженность окислительной зоны.
За счет увеличения расхода дутья производительность печи удается повысить более чем на 10%.
Обогащение дутья кислородом интенсифицирует горение, уменьшает содержание азота в газах и повышает температуру в горне.
В целях экономии кокса в настоящее время успешно применяют природный газ, вдувая его в горн. Диссоциация продуктов горения, а также восстановление СО2 и Н2О поглощают тепло, которое должно быть компенсировано более высокой температурой дутья. Увеличение содержания водорода при использовании природного газа усиливает и ускоряет восстановление. При вдувании на 1 т чугуна около 100 м 3 природного газа и около 60 м 3 кислорода расход кокса уменьшается на 15—17%, а производительность возрастает на 10%.
Частичная замена кокса пылевидным топливом также возможна. Для этого некоксующийся уголь с пониженным содержанием серы и золы в виде пыли вдувают через фурмы, экономя этим до 30% кокса.
Восстановление окислов железа и других соединений
Характерным для доменного процесса является непрерывность и взаимодействие опускающихся шихтовых материалов с встречным потоком восстановительных газов. Восстановителями являются водород и окись углерода, которая в газах количественно преобладает и имеет первостепенное значение. Восстановление окислов железа окисью углерода называют косвенным.
Восстановление окислов железа протекает ступенчато — от высшего окисла до металлического железа последовательно повышающейся прочности связи кислорода с железом Fe2О3→Fe3О4→FeО→Fe. При температурах выше 570° С восстановление окиси железа до железа осуществляется тремя ступенями по следующим реакциям:
ΔН 298 = — 52,25 кДж, ΔZ 0 = — 52130 — 41,00Г Дж/моль;
ΔН 298 = 35,45 кДж, ΔZ 0 = 35380 — 40,167 Дж/моль;
3. FeO + СО = Fe + СО2,
ΔН298 = — 13,20 кДж, ΔZ 0 = — 13160 + 17,21 Г Дж/моль.
Термодинамическая неустойчивость закиси железа (вюстита) при температурах ниже 570° С обусловливает двухступенчатую схему восстановления F е2О3→Fe3O4→Fe с восстановлением магнитной окиси железа по реакции
Восстановление возможно при исходных составах газовой фазы, определяющих процесс с убылью изобарного потенциала:
Для того чтобы изобарный потенциал был меньше нуля ( Δ Z Равновесию реакций восстановления отвечает строго определенное (для каждой температуры) отношение парциальных дав лений р СО2 /р СО или концентраций СO2/СО в газовой фазе. На основании многочисленных исследований построена диаграмма равновесия железа, углерода и их окислов (рис. 2). Каждая линия диаграммы характеризует изменение равновесного отношения СO2/СО данной реакции в зависимости от температуры. Восстановление обеспечивается избытком СО в газовой фазе относительно его равновесного содержания. Каждое поле диаграммы, ограниченное линиями равновесия, определяет границы температур и составов газовой фазы, при которой устойчива та или другая твердая фаза. Правое поле от линий равноесия 3 и 4 характеризует условия устойчивого существования металлического железа. Очевидно, при отношении СО2/СО, меньше равновесного с FeO—Fe для данной температуры, окислы железа восстанавливаются до железа. Чем богаче газовая фаза окисью углерода, тем более удалена система от равновесия и тем успешнее протекает восстановление. Состав доменного газа по высоте печи, нанесенный на диаграмму равновесия, оказывается далеким от равновесия. Газ проходит печь с такой большой скоростью, что покидает ее с неиспользованной окисью углерода, но успевает отдать шихтовым материалам тепло. Рис. 2. Восстановительные свойства доменного газа в зависимости от температуры (уровень 400° С соответствует колошнику, уровень 1000—1100° С — низу шахты — распару): 14 — линии равновесия окислы железа — железо с газовой фазой СО—С02; 5,6 — пределы составов доменного газа на различных температурных уровнях; 7,8 — линии равновесия С—СО—С02 (7 — давление CO + CO 98,06 кН/м 2 ; 8 — давление CO+CO 39,2 кН/м 2 ) Отношение СО/СО2 в колошниковых газах составляет обычно от 2 до 3. Температура колошника обеспечивает возможность восстановления окислов железа непосредственно после загрузки их в печь. Основная масса окислов железа восстанавливается до металлического железа к горизонтам низа шахты и распара. Г. И. Чуфаров с сотрудниками экспериментально показали адсорбционно-автокаталитический механизм процесса восстановления, который протекает в три стадии: 1) адсорбция газа-восстановителя СО или Н2 на поверхности окисла; 2) отрыв кислорода от окисла и переход его к адсорбированным молекулам СО или Н2 с возникновением при этом молекул СО2 или Н 2О и новой фазы металла; 3) удаление (десорбция) продукта восстановления СО2 или Н 2О от реакционной поверхности: Me Отв + СОгаз = Me Отв + СОадс Me Отв + СОадс | Me Отв + СО2адс, МеО тв + СО2адс = Ме тв + СО2газ Автокаталитическому характеру процесса восстановления окислов железа отвечают: малая скорость реакции в начальный подготовительный период из-за трудности формирования новой фазы; интенсивное восстановление во второй период (рост поверхности раздела твердых фаз); падение скорости реакции в третий период в результате того, что многочисленные реакционные зоны сливаются в одну поверхность, площадь которой непрерывно уменьшается. Скорость и степень восстановления железорудных материалов зависит от скорости подвода газа-восстановителя к зоне реакции и отвода от нее газовых продуктов; температуры процесса, крупности железорудных материалов (в результате дробления кусков восстановление ускоряется, так как увеличивается поверхность контакта кусков с восстановителем); пористости кусков (с увеличением пористости восстановление усиливается). При повышении давления газа-восстановителя усиливается его сорбция на поверхности железорудных материалов, а с увеличением скорости газового потока уменьшается толщина газовой пленки вокруг кусков. Адсорбционно-автокаталитический механизм действует в условиях пониженных и умеренных давлений и температур, т. е. в верхней половине шахты доменной печи. При высоких давлениях и температурах определяющим звеном и механизмом становится диффузия, в частности диффузия через восстановленный слой металла или низшего окисла. В зависимости от состояния восстановленного слоя может осуществляться диффузия молекул газа восстановителя и в обратном направлении газовых продуктов реакции. При плотной кристаллической структуре восстановленного слоя осуществляется диффузия ионов Fe 2+ и Fe 3+ к зоне реагирования. Диффузионный механизм характерен для низа шахты и распара. Восстановление окислов возможно также за счет твердого углерода. Такое восстановление называется прямым и рассматривается как суммарный процесс восстановления окисью углерода и взаимодействия углерода с двуокисью углерода, по следующим реакциям: FeOTB + СО = FeTB + СО2; ΔН298 = — 13,20 кДж, С + СО2 = 2СО; ΔН298 = 172,30 кДж FeOTB + С = FeTB + СО; ΔН 298 = 159,10 кДж Таким образом, непосредственное восстановление осуществляется газовым восстановителем — окисью углерода, а твердый углерод, взаимодействуя с продуктом восстановления — двуокисью углерода, регенерирует окись углерода. Для прямого восстановления необходимо регенерирование двуокиси углерода в окись углерода со скоростью, восполняющей расход последней на восстановление. Прямое восстановление развивается тем сильнее, чем выше температура. В доменной печи в зоне температур 900—1000° С и выше восстановление происходит исключительно прямым путем. При выплавке обычных сортов чугуна от 40 до 60% железа восстанавливается из вюстита прямым путем. При выплавке чугуна с высоким содержанием марганца и кремния прямое восстановление достигает 80%. Окислы марганца вносятся в доменную печь железной, марганцевой рудами или агломератом и восстанавливаются ступенчато аналогично окислам железа: Восстановление до закиси марганца происходит в шахте на горизонтах температур 400—800° С. Закись марганца трудно восстановима и восстанавливается только за счет твердого углерода по реакции МnОтв + Скокса = Мn + СО; ΔН298 = 209,04 кДж с затратой тепла большей, чем при восстановлении закиси железа. Поэтому при выплавке ферромарганца расход кокса составляет 2,2—2 ,5 массовых единиц на единицу сплава. Восстановление закиси марганца задерживается до горизонта температур 1100—1200°С, при которых образуются жидкие шлаки. В результате этого закись марганца в виде силикатных соединений переходит в шлак, и восстановление марганца происходит из шлаковых расплавов. При этом прямому восстановлению марганца благоприятствует растворение в шлаках извести в соответствии с реакцией MnO•SiO2 + 2СаО + С = Мn + 2СaО•SiO2+ СО; ΔН298 = 178,87 кДж При выплавке высокомарганцовистых сплавов полноте восстановления марганца способствуют повышенная основность шлака; снижение, относительного количества шлака; высокая температура нижних горизонтов печи. Так как сродство кремния к кислороду выше, чем марганца, то для его восстановления необходимо более низкое отношение СО2/СО в газе. Восстановление кремнезема происходит твердым углеродом при высоких температурах по реакции Si02 + 2С = Si + 2СО; ΔН298 = 61 1,74 кДж Еще до восстановления кремнезема силикаты переходят в шлаковый расплав, так что восстановление кремния происходит из шлаковых расплавов. Восстановление марганца и кремния значительно облегчается при растворении их в железе, при этом восстановленный кремний образует силициды, растворяющиеся в железе. Образование карбидов восстановленных металлов также облегчает восстановление трудновосстановимых окислов. Фосфор вносится в печь рудными материалами в виде Fe3(PО 4)2 •8 Н2О и Са3Р2О3. Восстановление его из фосфата железа происходит косвенным и прямым путем, а из фосфата кальция только прямым (из шлаковых расплавов) по реакциям: 2 (3FeO • Р2О5) + 16С = 3 [Fe2P] + [Р] + 16СО, (3СаО • Р2О5) + 5С = 3 (СаО) + 2 [Р] + 5СО; ΔН298= 1590,73 кДж. Реакция облегчается в присутствии кремнезема, разрушающего фосфат кальция: Все эти процессы вместе с образованием фосфидов железа Fe2Р, Fe3P, растворимых в железе, обеспечивают полноту восстановления фосфора, загрязняющего чугун. Единственная возможность получения чугуна с низким фосфором — малое содержание последнего в шихтовых материалах. Хром восстанавливается из хромитов FeO•Cr2О3, а ванадий— из окислов V2O3, V2O2 и ванадитов. Степень восстановления хрома составляет 90%, ванадия 80%. Никель и кобальт восстанавливаются легче железа и полностью переходят в чугун. Восстановление окислов железа заканчивается при 1100— 1200° С на уровне низа шахты и верха распара. Твердое железо γ-модификации растворяет углерод с образованием твердого раствора — аустенита. Железо каталитически способствует сдвигу равновесия реакции влево с выделением активированного углерода, внедряющегося в решетку γ-железа: 3Fe + 2СО = Fe,C + СО2 Температура плавления науглероженного железа более низкая, чем у чистого железа (см. рис. 211), поэтому железо, науглероженное до 1,5—2% С, плавится на уровне распара и каплями стекает по кускам кокса, дополнительно растворяя углерод, содержание которого в чугуне достигает 3,7—4,2%. Одновременно и вслед за науглероживанием чугун растворяет фосфор, марганец и кремний. Наличие в чугуне карбидообразующих элементов— марганца, хрома и др. повышает углерод в чугуне. Напротив, кремний, фосфор и сера способствуют снижению углерода, разлагая Fe3C и выделяя свободный углерод в виде графита. Это повышает механические свойства твердого чугуна, поэтому чугун для литья плавят в условиях, повышающих восстановление кремния в чугун до 4,0%. Статья на тему Доменный процесс Похожие страницы: Доменный чугун получение В доменных печах выплавляют литейные передельные — мартеновские, бессемеровские, томасовские — и специальные чугуны — доменные ферросплавы. Окислительно восстановительные реакции с железом Развитие чёрной металлургии, куда включаются железо, сталь, чугун и марганец, является показателем технического и культурного прогресса. Производство ферромарганца Доменный ферромарганец содержит 70—80% Мn и 6,5— 7,5% С. Электротермический ферромарганец по содержанию углерода делится на углеродистый (до. Бессемеровский процесс Бурное развитие промышленности в середине XIX в. особенно машиностроения, судостроения и железнодорожного транспорта, потребовало массового производства стали. Проблема. Дистилляция цинка Один из недостатков вертикальных реторт связан с необходимостью передачи тепла через стенки, которые поэтому горячее содержимого и быстро. Кислый мартеновский процесс В кислых печах из шихт, не содержащих серы и фосфора, получают качественную и высококачественную сталь. После расплавления шлак. Понравилась статья поделись ей Для отправки комментария вам необходимо авторизоваться. https://znaesh-kak.com/q/m/%D0%B4%D0%BE%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9-%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81 Образование жидкого чугуна
Leave a Comment